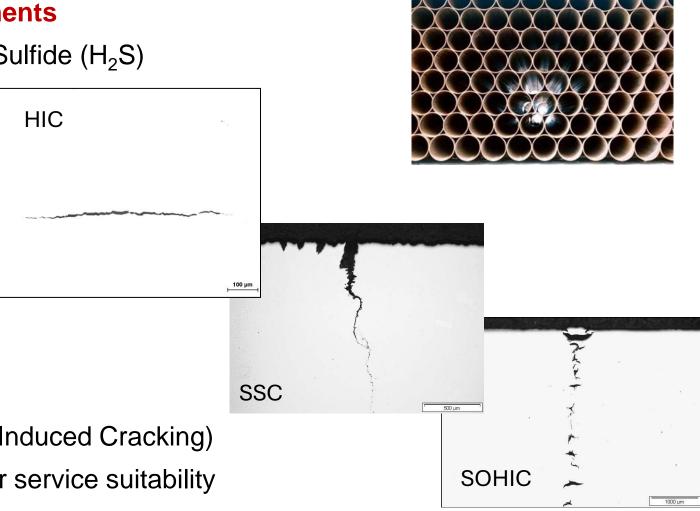
SSC Performance of TMCP-based Large-Diameter Pipes in High H₂S Partial Pressure Environments

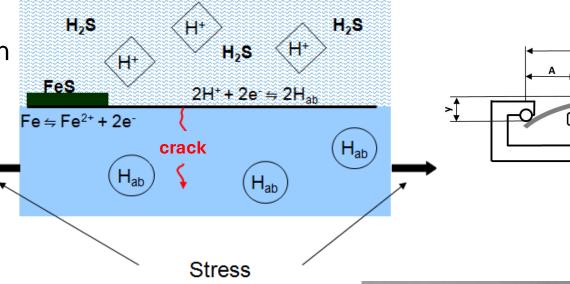
<u>Christoph Bosch</u>, EUROPIPE Thomas Haase, Salzgitter Mannesmann Forschung

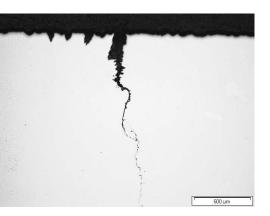


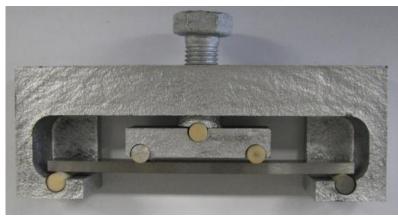
Introduction

Line pipe steel for sour service environments

- Oil or gas containing aqueous Hydrogen Sulfide (H₂S)
- Corrosion reactions of steel with H₂S
 - Formation of atomic hydrogen
 - Hydrogen uptake and diffusion
 - Prerequisite for crack initiation
- Different forms of cracking in steel
 - HIC (Hydrogen Induced Cracking)
 - SSC (Sulfide Stress Cracking)
 - SOHIC (Stress-Oriented Hydrogen Induced Cracking)
- Resistance testing as qualification for sour service suitability

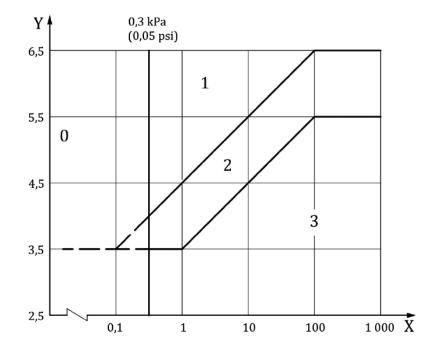

Sour Service – SSC Testing


Sulfide Stress Cracking


- Atomic hydrogen from H₂S corrosion
- Hydrogen uptake and diffusion
- Cracking from combined action of
 - Hydrogen embrittlement
 - External or residual stresses

SSC testing

- Mandatory qualification test
- Four-point bend test
 - EFC Publ. No. 16
 - NACE TM0177-2016
 - NACE TM0316-2023



SSC Test Requirements

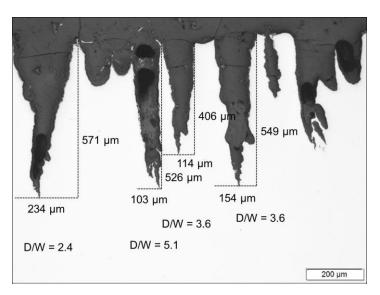
Qualification according to NACE MR0175 / ISO 15156-2

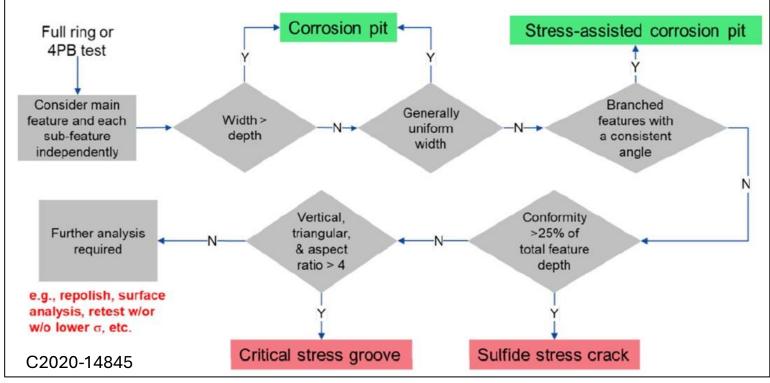
- Environmental severity based on p(H₂S) and pH
- Concerns about validity of region 3 for p(H₂S) > 100 kPa
- Influence of CO₂?

All SSC regions of Figure 1	FPB ^j	≥80 % AYS	NACE TM0177	100 kPa (15 psi) in accordance with NACE TM017 7	No SSC cracks in accordance with NACE TM0316 assessment method	_	
	UT or CR	≥80 % AYS			No SSC cracks in accordance with NACE TM0177 assessment method		
	DCB ^h	Not applicable			Assessment shall be in accordance with NACE TM0177. Acceptance criteria shall be by documented agreement ^k	Use as qualification at equipment user's discretion and with documented justification	

Key

- $X \hspace{0.5cm} H_2S$ partial pressure, expressed in kilopascals
- Y in situ pH
- 0 region 0
- 1 SSC region 1
- 2 SSC region 2
- 3 SSC region 3

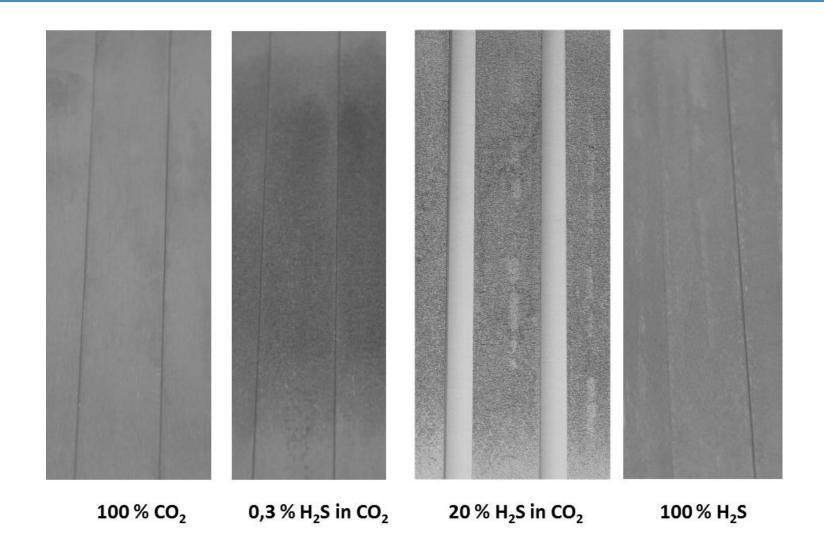

NOTE 1 The discontinuities in the figure below 0,3 kPa (0,05 psi) and above 1 MPa (150 psi) partial pressure H_2S reflect uncertainty with respect to the measurement of H_2S partial pressure (low p_{H_2S}) and the steel's performance


outside these limits (for both low and high $\,p_{\rm H_2S}$).

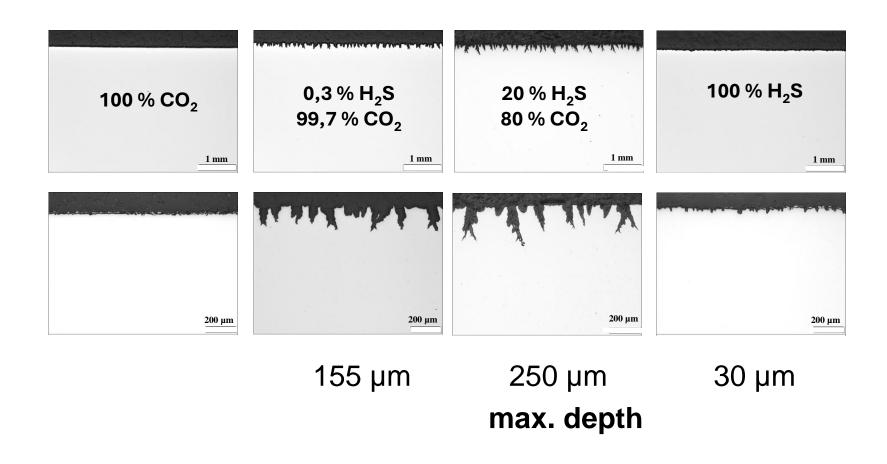
SSC Test Evaluation – Pitting and Grooving

Metallographic evaluation of SSC four-point bend test specimens

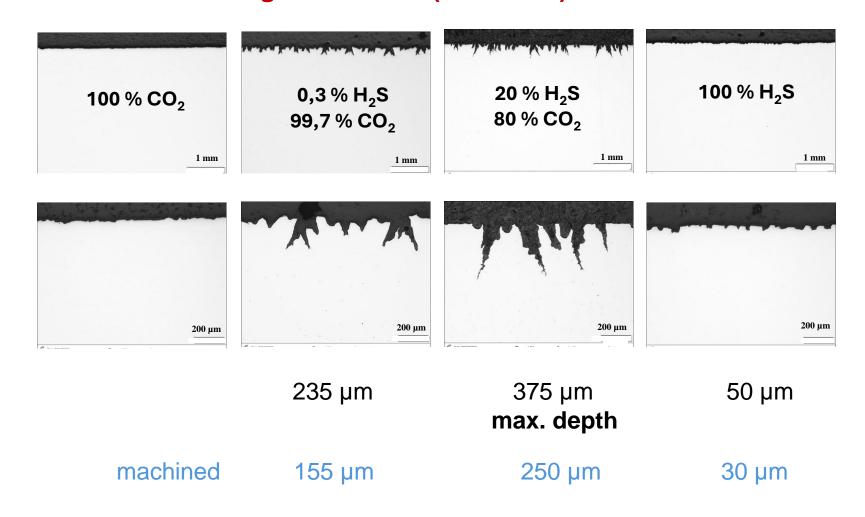
- Potential initiation of stress-assisted grooving or pitting
- Distinction between SSC cracks and pits as essential evaluation criteria
- Recommended C2020-14845 evaluation criteria flow chart



Influence of CO₂ on SSC test specimens – Learnings from C2021-16571


SSC Test on X65

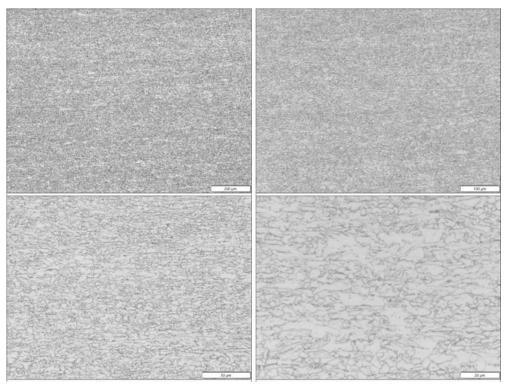
- 1 bar total pressure
- Machined surface
- 100 % CO₂ to 100 % H₂S
- Effect of CO₂ content in test environment on surface roughness


Influence of CO₂ on SSC test specimens – Learnings from C2021-16571

SSC tests results for X65 with machined surface (90 % AYS)

Influence of CO₂ on SSC test specimens – Learnings from C2021-16571

Tests results for X65 with original surface (90 % AYS)


Investigated Pipe Material

X65 SAWL large-diameter pipes (TMCP-based)

OD 812 mm (32") diameter with 25.4 mm and OD 965 mm (38") with 28.8 mm wall thickness

- Eight different pipes / heats covered
- Average base material hardness
 - 0.25 mm below surface: 226 HV0.1
 - 1 mm below surface: 227 HV0.1 / 209 HV10
- Fully HIC resistant material with bainitic microstructure
- Chemical analysis with low C and Mn

Chemical Analysis [Weight %]								
	С	Si	Mn	P	S	Ni	Nb + V + Ti	Others
Pipe	0.04	0.26	1.42	0.006	0.001	0.44	0.04	Cu, Cr

SSC Test Conditions

Four-point bend specimens (140 mm x 15 mm x 5 mm)

- Longitudinal base material specimens, machined with intact pipe inside surface
- Weld specimens transverse to longitudinal weld, fully machined

SSC tests in autoclave, six test conditions

Load 90 % AYS (AYS: 481 - 530 MPa), at ambient temperature (25 °C)

Test condition	p H₂S [bar]	p CO₂ [bar]	Load % AYS	Test solution	рН	Test duration
Α	1.0	0.0	90	TM0177 A	2.7-4.0	720 h
В	3.3	6.0	90	TM0177 B	3.5	720 h
С	7.0	3.0	90	TM0177 B	3.5	720 h
D	12.0	3.0	90	TM0177 B	3.5	720 h
E	16.0	1.0	90	TM0177 B	3.5	720 h
F	16.0	5.0	90	TM0177 B	3.5	720 h

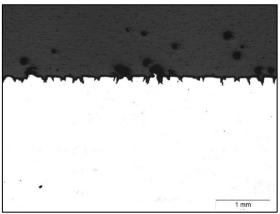
- pH adjusted before test start; Oxygen below 10 ppb
- Re-pressurization if pressure drop ≥ 0.5 bar

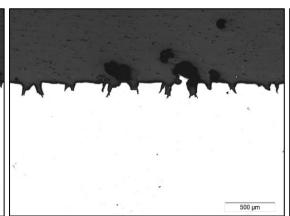
SSC Test Results - Overview

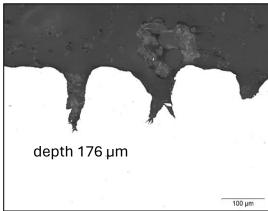
Results of Evaluation

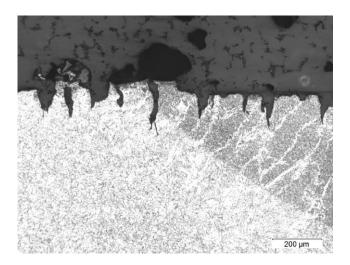
- Visual evaluation and wet magnetic particle inspection (MPI)
- Sectioning at 1/3 and 2/3 width (or crack location) for metallographic evaluation

Test	p H₂S	p CO ₂	Specimen	Evaluation	
condition	[bar] [bar]		Location	Visual	Metallographic
Α	1.0	0.0	base material	o.k.	Small pits
A			weld	o.k.	Small pits
В	3.3	6.0	base material	o.k.	SAC / Pits
B			weld	o.k.	SAC / Pits
	7.0	3.0	base material	o.k.	SAC / Pits
С			weld	small HIC Blister	SAC / Pits
D	12.0	3.0	base material	HIC Blister	HIC Blister + SAC / Pits
			weld	HIC Blister	HIC Blister (BM) / SAC / Pits
E	16.0	1.0	base material	HIC Blister	HIC Blister + SAC / Pits
			weld	multiple HIC Blister	multiple SOHIC (BM) + SAC / Pits
F	16.0	5.0	base material	broken HIC Blister	deep HIC Blisters + SAC / Pits
			weld	multiple HIC Blister	SOHIC (BM) + SAC / Pits


 SAC: Stress-Assisted Corrosion

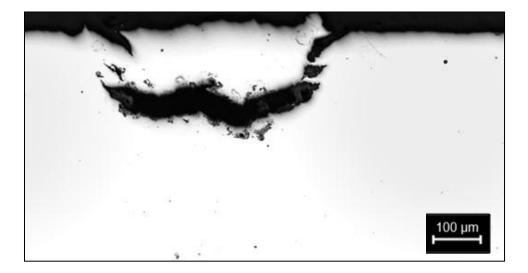

Up to 7 bar H₂S / 3 bar CO₂


- No visible surface features other than SAC and pits for base material
- Depth of SAC / pits in general below 200 µm



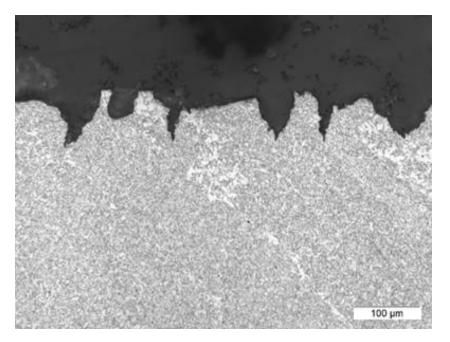
Up to 7 bar H₂S / 3 bar CO₂

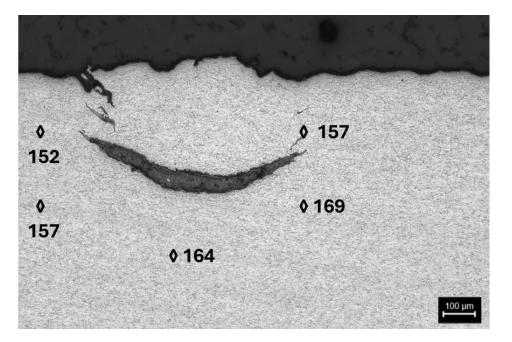
- For weld specimens small HIC blisters in base material area of specimens
- SAC / pit characteristics comparable in base and weld material



12 bar H₂S / 3 bar CO₂

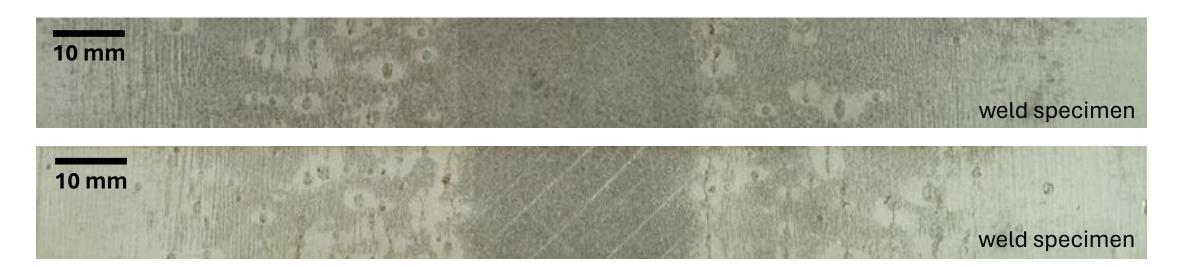
• HIC blisters formed in base material specimens





12 bar H₂S / 3 bar CO₂

• HIC blisters formed in base material portions of weld specimens



♦ HV0.1

16 bar H₂S / 1 bar CO₂

- Tendency to blistering intensified, especially in base material of weld specimens
- Formation of SOHIC below blisters close to the heat-affected zone of the weld specimens

SSC Test Results – Influence of CO₂

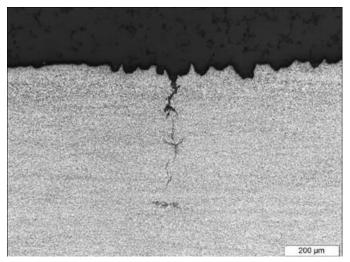
16 bar H₂S / 1 bar CO₂

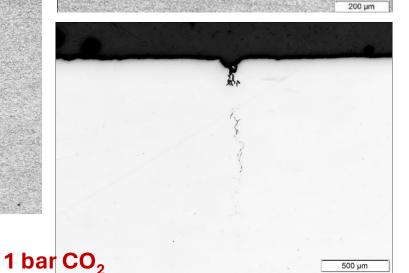
High Tendency to blistering in weld specimens under 1 bar CO₂

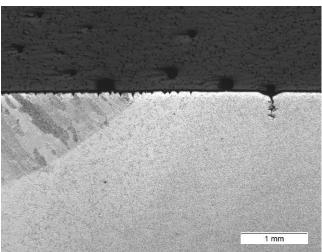
SSC Test Results - Influence of CO₂

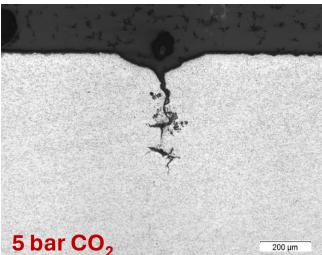
16 bar H₂S / 5 bar CO₂

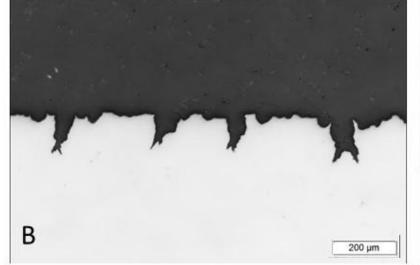
- Effect of CO₂ in the pressurized test environment
- Tendency to blistering lower in higher CO₂ environment (1 bar vs. 5 bar)

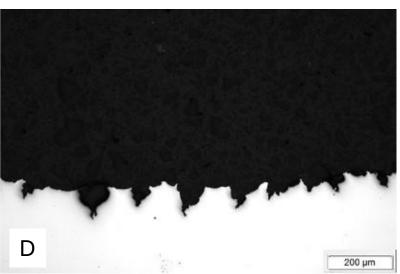





SSC Test Results - Influence of CO₂


- 16 bar H₂S / 1 bar vs. 5 bar CO₂
- Formation of SOHIC below the blisters
- Depth > 1 mm at 1 bar CO₂
- Depth reduced at 5 bar CO₂




SSC Test Evaluation for Pits, Grooves and SACs

Metallographic evaluation of SSC test specimens

Correlation of depth and shape with environmental conditions difficult

3.3 bar H_2S / 6 bar CO_2

12 bar H_2S / 3 bar CO_2

- Depth of nearly all features 150-200 µm max.
- Recommendation to exclude features below threshold (200 µm suggested) from further evaluation for TMCP line pipe steel

Conclusions

- Results of elevated-pressure SSC autoclave tests have been compared for TMCP line pipe steel.
- Occurrence of stress-assisted pits and grooves independent of test conditions.
- Recommendation to exclude features that extend less than a particular limit from further metallographic evaluation and calculations (200 µm suggested).
- Within region 3 of NACE MR0175/ISO 15156-2 the results indicate a potential border of SSC resistance between 7 bar and 12 bar H₂S partial pressure.
- The effect of the amount of CO₂ in the test environment is fundamental.
- With increasing CO₂ partial pressure, the severity of the test environment has been found to decrease.
- Possible combined effect of CO₂ corrosion and H₂S fugacity.
- Potential influence of lower H₂S fugacity combined with higher general (lower localized) CO₂ corrosion at higher levels of CO₂.
- The level of CO₂ in the test environment should be considered relevant for SSC testing and should be selected close to intended field conditions.

Thank You for your Attendance

